DB-Suite: Experienceswith Three Intelligent, Web-Based Database Tutors
Mitrovic, Antonija;Suraweera, Pramuditha;Martin, Brent; Weerasinghe, Amali

Journal of Interactive Learning Research; 2004; 15, 4; ProQuest

pg. 409

JI. of Interactive Learning Research (2004) 15(4), 409-432

DB-Suite: Experiences with Three Intelligent,
Weh-Based Database Tutors

ANTONIJA MITROVIC, PRAMUDITHA SURAWEERA,
BRENT MARTIN, AND AMALI WEERASINGHL:
University of Canterbury, Christchurch, New Zeualand

http://www.cosc.canterbury.ac.nz/~tanja/ictg.html

[i-learning is becoming more and more popular with the
widespread use of computers and the Internct in cducational
institutions. Current c-learning courses arc ncarly always
developed using coursc management systems (CMS), such as
WebC'T or Blackboard. Although CMS tools provide support
for some administrative tasks and cnable instructors to pro-
vide onlinc instructional material, they offer no deep support
for learning: students have access to online material, simple
multi-choice quizzes, and chat tools, but there is no ability to
track student’s progress and adapt the learning material and
instructional scssion to the individual student. In this article
we present our experiences with three web-based intelligent
tutoring systems in the arca of databases. SQL-Tutor tcaches
the SQL query language, NORMIT is a data normalization
tutor, and KERMIT teaches conceptual databasc modelling
using the Entity-Relationship data model. All three tutors in
DB-suite have been used and evaluated in the context of gen-
uine teaching activitiecs. We present the most important fea-
tures of these systems, as well as evaluation results. The DB-
suite tutors have proved to be very cffective in supporting
deep learning, and arc well liked by students.

Intelligent Tutoring Systems (1TS) have been proven to be very effective
in domains that require extensive practice (Corbett, Trask, Scarpinatto, &
Hadley, 1998; Kocdinger, Anderson, Hadley, & Mark, 1997; Mitrovic &
Ohlsson, 1999). In this article, we present DB-suite, consisting of three web-
cnabled ITSs that teach various databasc skills to university students. Data-
bases are ubiquitous in today’s information systcms. Our tutors arc web-
enabledspandpthuspaiepclassioompandgplatform independent (Vasilakos,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

410 Mitrovic, Suraweera, Martin and Weerasinghe

Devedzic, Kinshuk, & Pedrycz, 2004). The most mature of the three systems
is SQL-Tutor (Mitrovic, 1998a; 1998b; Mitrovic & Ohlsson, 1999; Mitrovic,
Mayo, Suraweera, & Martin, 2001), an ITS that teaches the SQL query lan-
guage. KERMIT (Knowledge-based Entity Relationship Modelling Intelii-
gent Tutor) (Suraweera & Mitrovic, 2001) teaches conceptual database mod-
clling, while NORMIT (NORMalization Intelligent Tutor) teaches databasc
normalization (Mitrovic, 2003). All three tutors comprising DB-suitc arc
problem-solving environments, where the system presents problems to solve
and offers adaptive problem-solving support and feedback.

The DB-suite tutors arc based on Constraint-Based Modeling (CBM)
(Ohlsson, 1994). The Intelligent Computer Tutoring Group (ICTG) has also
developed other constraint-based tutors: for example, CAPIT (Mayo, Mitro-
vic, & McKenzie, 2000; Mayo & Mitrovic, 2001) is a MS Windows-based,
standalone tutor that tecaches punctuation and capitalization rules in English,
and LBITS (Martin & Mitrovic, 2002b) tcaches vocabulary skills to clemen-
tary school children. Based on our experiences developing these tutors, we
have also implemented WETAS (Martin & Mitrovic, 2002a; 2003), an author-
ing shell for developing constraint-based tutors. WETAS is now being uscd for
developing new tutors, including a web-enabled version of KZRMIT.

We start by briefly describing CBM and our databasc tutors. The follow-
ing three sections are devoted to SQL-Tutor, KERMIT and NORMIT respec-
tively. The effectivencess and the students’ pereeption of DB-suite tutors were
evaluated in several empirical cvaluation studies. We present these studies,
which demonstrate the effectiveness of the systems for student’s lcarning.
Finally, we present the conclusions and directions for future work.

CONSTRAINT-BASED TUTORS

Intelligent tutoring systems arc developed with the goal of automating
onc-to-onc human tutoring, which is the most effective mode of teaching
(Bloom, 1984). ITSs offer greater flexibility in contrast to non-intelligent
software tutors since they can adapt to each individual student. Although
ITSs have been proven to be effective in a number of domains, the number
ol ITSs used in real courses is still extremely small (Mitrovic, Martin &
Mayo, 2002). Our goal when developing DB-suite was twofold: to provide
our students with a flexible learning environment that will adapt to their
needs, and to develop a powerful methodology for developing constraint-
bascd tutors. Our methodology is based on Ohlsson’s (1996) theory of learn-
ing from performance errors.

The typical architecture of constraint-based tutors is given in Figure 1.
The tutors are developed in AllegroServe web server, an cxtensible server
provided with Allegro Common Lisp. All student models arc kept on the
seiveizAt-the-beginning-of-interactionsa-student is required to enter his/her

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DB-Suite: Experiences with Three Intelligent, Web-Based Database Tutors 411

Web
browser

/

/
7 Internet

Web server
(AllegroServe)

. Session
Logs
manager

_/-""/ﬁ/-‘
'//_,-/"’
_—
Student . Pedagogical o Problem
modeler module solver
= i / 3, S b " 4
f\ *«-m\‘_m\ \N\"*—m /,//" T
——_— g .
\““N\ e s i
B B B |
B AR ¥
o e o R -
student [consi.;;llj:l Problems }

Figure 1. The architecture of D-B-suite tutors

name, which is necessary to establish a scssion. The scssion manager
requires the student modeller to retrieve the model for the student, if there is
one, or to create a new modcel for a new student. DB-suite tutors identify the
students by their login name, which is embedded in a hidden tag of IITML
forms. All student actions are sent to the session manager, to be linked to the
appropriate scssion and stored in the student’s log. The action is then sent to
the pedagogical modulc (PM). If the submitted action is a solution to the cur-
rent step, the PM sends it to the student modeller, which diagnoses the solu-
tion, updates the student model, and sends the result of the diagnosis back to
the PM, which generates feedback.

SQL-Tutor and NORMIT arc web-cnabled tutors with a centralized
architecture, with all tutoring functions performed on the server side. In
these two domains, solutions produced by students are textual, and the
er 1s small, so that the central-

eproduction prohibited without permission.

412 Mitrovic, Suraweera, Martin and Weerasinghe

ized architecture is suitable. In KERMIT, students draw diagrams, and some
tutoring functions rclated to drawing arc performed on the client side. The
tutoring functions are therefore distributed between the server and the Java
applet, as described later.

Domain knowledge consists of a set of constraints. Constraint-Based
Modeling (CBM) (Ohlsson, 1994; Mitrovic & Ohlsson, 1999) is a student
modeling approach that is not interested in the cxact sequence of states in the
problem space the student has traversed, but in what statc he/she is in cur-
rently. As long as the student never reaches a state that is known to be wrong,
they are free to perform whatever actions they please. The domain model is
a collection of state descriptions of the form: /f <relevance condition> is
true, then <satisfaction condition> had better also be true, otherwise some-
thing has gone wrong.

The knowledge base consists of constraints used for testing the student’s
solution for syntax errors and comparing it against the system’s idcal solu-
tion to find semantic errors. The knowledge base enables the tutor to identi-
fy student solutions that are identical to the system’s ideal solution. Morc
importantly, this knowledge also cnables the system to identify valid alter-
native solutions, that is, solutions that are correct but not identical to the sys-
tem’s solution. Each constraint specifies a fundamental property of a domain
that must be satisfied by all solutions. Constraints are problem-indcpendent
and modular, and therefore easy to evaluate. They are written in Lisp, and
can contain built-in functions as well as domain-specific ones. For examples
of constraints, please see (Mitrovic, 1998a, 2002; 2003; Surawecra & Mitro-
vic, 2001; 2002; Martin & Mitrovic, 2003; Mitrovic, Koedinger, & Martin,
2003). If the satisfaction condition of a relevant constraint is met by the stu-
dent solution, the solution is correct. In the opposite case, the student will be
given feedback on crrors.

Onc of the advantages of CBM over other student modeling approaches
(Mitrovic, Koedinger, & Martin, 2003) is its independence from the prob-
lem-solving strategy employed by the student. CBM models students’ eval-
uative, rather than generative knowledge and therefore does not attempt to
inducce the student’s problem-solving strategy. CBM doces not require an exe-
cutable domain model, and is applicable in situations in which such a model
would be difficult to construct (such as database design or SQL query gen-
cration). Furthermore, CBM climinates the need for bug librarics, that is,
collections of typical errors made by students. On the contrary, CBM focus-
¢s on correct knowledge only. If a student performs an incorrect action, that
action will violate some constraints. Therefore, a CBM-based tutor can rcact
o misconceptions although it does not represent them explicitly. A violated
constraint means that student’s knowledge is incomplete/incorrect, and the
system can respond by generating an appropriate feedback message. Feed-
back messages arc attached to the constraints, and they explain the gencral

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DB-Suite: Experiences with Three Intelligent, Web-Based Database Tutors 413

principle violated by the student’s actions. Feedback can be made very
detailed, by instantiating parts of it according to the student’s action.

The student modeller evaluates the student’s solution against the knowl-
edge base and updates the student model. The short-term student model con-
sists of a list of violated and a list of satisfied constraints for the current
attempt. The long-term model records the history of usage for cach con-
straint. This information is used to sclect problems of appropriate complex-
ity for the student, and to generate feedback.

All DB-suite tutors contain predefined database problems. KEXMIT and
SQL-Tutor also contain a prespecified ideal solution for cach problem, as
there are no problem solvers for these two tutors. NORMIT, on the other
hand, contains a problem solver, and is capable of solving both prespecified
problems and the problems cntered by students.

The pedagogical module (PM) is the driving engine of the whole system.
Its main tasks arc to gencrate appropriate feedback messages for the student
and to select new practice problems. PM individualizes these actions to cach
student based on their student model. Unlike ITSs that use model tracing
(Anderson, Corbett, Koedinger, & Pelletier, 1996; Corbett ct al., 199%;
Koedinger et al., 1997), constraint-based tutors do not follow cach student’s
solution step-by-step: a student’s solution is only evaluated once it is sub-
mitted, although the student may submit a partial solution to get ideas on
how to progress.

The feedback is grouped into six levels according to the amount of detail:
correct, ervor flag, hint, detailed hint, all errors, and solution. The first level
of feedback, correct, simply indicates whether the submitted solution is cor-
rect or incorrect. The error flag indicates the type of construct (c.g., entity,
relationship, etc.) that contains the error. Hint and detailed hint offer a feed-
back message generated from the first violated constraint. Hint is a gencral
message such as “There are attributes that do not belong to any entity or rela-
tionship.” On the other hand, detailed hint provides a more specific message
such as “The ‘Address’ attribute does not belong to any entity or rclation-
ship,” where the details of the crroncous object are given. Not all detailed
hint messages give the details of the construct in question, since giving
details on missing constructs would give away solutions. A list of feedback
messages on all violated constraints is displayed at the all errors level. Final-
ly, the complete solution is displayed at the solution level,

Initially, when the student begins to work on a problem, the feedback
level is sct to the correct level. As a result, the first time a solution is sub-
mitted, a simple message indicating whether or not the solution is correct is
given. This initial level of feedback is deliberately low, as to encourage stu-
dents to solve the problem by themselves. The level of [eedback is incre-
mented with cach submission until the feedback level reaches the detailed
hinplevelmAutomaticallyrinerementingrthenlcvels of fecdback is terminated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

414 Mitrovic, Suraweera, Martin and Weerasinghe

at the detailed hint level to encourage to the student to concentrate on one
crror at a time rather than all the errors in the solution. Morcover, if the sys-
tem automatically displays the solution to the student on the sixth attempt, it
would discourage them from attempting to solve the problem at all, and may
cven lead to frustration. The system also gives the student the frecdom to
manually sclect any level of feedback according to their needs.

When sclecting a new problem, the PM firsts decides what concept is appro-
priate for the student on the basis of the student model. The concept that con-
tains the greatest number of violated constraints is targeted. We have chosen
this simplc problem sclection strategy to ensure that students get the most prac-
tice on the concepts with which they experience difficultics. In situations where
there is no obvious “best” concept (i.e., a prominent group of constraints to be
targeted), the next problem in the list of available problems, ordered according
to increasing complexity, is given. We have also experimented with alternative
problem sclection strategies, using Bayesian nets (Mayo & Mitrovic 2000,
2001) and neural networks (Wang & Mitrovic, 2002).

SQL-TUTOR

SQL-Tutor is our most hcavily developed constraint-based tutor. The
motivation for developing this tutor came from our tecaching cxperience.
SQL. is usually taught in classrooms, by solving problems on the blackboard,
complemented by lab exercises. Students experience many problems when
learning SQL. Some errors come from the burden of having to memorize
databasc schemas; others come from misconceptions in the student's under-
standing of the clements of SQL and the relational data model in general.
Some of the concepts students find particularly difficult to grasp arc group-
ing and restricting grouping. Join conditions and the difference between
aggregate and scalar functions arc another two common sources of confu-
sion. Furthermore, students find that it is not casy to lcarn SQL directly by
working with a RDBMS, because crror messages arc very often hard to
understand, and are limited to the syntax only.

The web-enabled version of SQL-Tutor has been used in regular courses at
the University of Canterbury since 1998, For a detailed discussion of the sys-
tem, sce (Mitrovic, Martin, & Mayo, 2002); here we present only some of its
features. The system contains definitions of several databases and a sct of prob-
lems and their ideal solutions. SQL-Tutor contains no problem solver. The
interface, illustrated in Figure 2, has been designed to be robust, flexible, and
casy to usc. It reduces the memory load by displaying the database schema and
the text of a problem, by providing the basic structure of the query, and also by
providing cxplanations of the clements of SQL. The top arca contains the but-
tons students can usc to request a new database/problem, see the history of the
cutentzsessionsoistheistudentsmodelsasks for help, and run their query. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DB-Suite: Experiences with Three Intelligent, Web-Based Database Tutors 415

GeBack v s <GB) 21 Pseadh [HfFavortes (Brsory S (b HE) 2
rhur

Would you ke b

 HAVING

ORDER BY |
Feadback Level fl!m 1 Subrink A et ; Pesc-ta

are of & table brings up o

Table Nare
HO0K

BRANCH
BOGKCOPIES
AUTHOR

Bioom (H Lol ohanet

Figure 2. A screenshot from SQL-Tutor

middle left scction displays the text of the problem being solved and students
can remind themselves easily of the elements requested in querics. The middle
left part also contains the clauses of the SELECT statement, thus visualizing the
goal structure. Students need not remember the exact keywords used and the
relative order of clauses. The middle right part is where the feedback and other
help messages are displayed. The bottom part displays the schema of the cur-
rent database. Schema visualization is very important; all database uscrs are
painfully aware of the constant need to remember table and attribute names and
the corresponding semantics. Students can get the descriptions of databasces,
tables or attributes. The motivation here is to remove from the student some of
the cognitive load required for checking the low-level syntax, and to enable the
student to focus on higher-level, query definition problems.

SQL-Tutor checks the student’s solution by comparing it to the correct
solution using domain knowledge represented in the form of more than 600
constraints. The student may sclect problems in several ways: they may work
their way through a scries of problems for each database (ordered by their
complexity), ask the system to select a problem on the basis of their student
model, sclect a problem from a list, or sclect the type of problem they wish
to work on, where the system then sclects an individual problem of that type

eproduction prohibited without permission.

416 Mitrovic, Suraweera, Martin and Weerasinghe

KEZXMIT: A KNOWLEDGE-BASED ER MODELLING TUTOR

Learning how to develop good quality databases is a core topic in the
Computer Science curriculum. Database design is a process of generating a
databasc schema using a specific data model. The quality of conceptual
schemas is of critical importance for database systems. Most database cours-
cs tecach conceptual database design using the Entity-Relationship (ER)
model, a high-level data model originally proposed by Chen (1976). Although
the traditional method of learning ER modeling in a classroom environment
may be sufficient as an introduction to the concepts of database design, stu-
dents cannot gain expertisc by attending lecturcs only: like other design tasks,
extensive practise is necessary. KERMIT assists students in this task. The
system is designed to complement classroom teaching, and therefore assumes
that students arc already familiar with the fundamentals of databasc theory.
In KERMIT, students construct ER schemas that satisfy a given set of
requirements. The system assists students during problem solving and guides
them towards the correct solution by providing tailored feedback.

The system is designed for individual work. The student is given a textu-
al description of the requirements of the database, and uscs the IR modcl-
ling notation to construct an ER schema, as shown in Figure 3. KERMIT’s
interface consists of three main components. The top part contains the con-
trols for the student to ask for a new problem, look at the history of the cur-

87 dppiet applsts

Figure 3. KERXMIT’s interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DB-Suite: Experiences with Three Intelligent, Web-Based Database Tutors 47

rent session, explore their student modcel, ask for help or log out. The middle
component is the Java applet, which displays the text of the problem. It also
provides an ER modecling workspace where students create ER diagrams.
The lower window displays feedback from the system in textual form. The
ER diagram is constructed using the workspace integrated into KERXMIT’s
interface. Whenever a new object is created, the system asks for it to be
named by highlighting a phrasc from the problem text. This interface has two
benefits: the student is forced to think about the requirements in terms of the
original problem text, and it is also easier for the tutor to understand the
semantics of the constructs in the student’s diagram. Once the student has
completed the problem or requires guidance from the system, the solution is
evaluated. Depending on the results of the cvaluation, the system may cither
congratulate the student or offer hints on their errors.

The web-cnabled version of KERMIT was developed in WETAS (Martin
& Mitrovie, 2003). The domain knowledge of KERMIT is represented as a
sct of constraints, which is used for testing the student’s solution (for syntax
errors) and comparing it to the idcal solution. Currently KEXMIT’s knowl-
edge base consists of 135 constraints. Most syntactic constraints of KL -
MIT were formulated by analysing the target domain of ER modelling
through the literature (Elmasri & Navathe, 1994). Due to the nature of the
domain, the acquisition of syntactic constraints was not straightforward.
Since ER modelling is an ill-defined domain, descriptions of its syntax in
textbooks are informal. This process was conducted as an iterative exercisc
in which the syntax outline was repeatedly refined by adding new con-
straints. Semantic constraints are even harder to formulate: we analysed
sample ER diagrams and compared them against their problem specifica-
tions to derive the basic semantic constraints.

LEARNING DATA NORMALIZATION IN NORMIT

Database normalization is the process of refining a rclational database
schema to ensure that all tables are of high quality (Elmasri & Navathe,
1994). Normalization is usually taught in introductory database courses in a
serics of lectures, and later practised on paper by looking at specific databas-
cs and applying the definitions. NORMIT is a problem-solving environment,
which complements traditional classroom instruction. The system does pro-
vide help about the basic domain concepts, when there is evidence that the
student does not understand them, or has difficultics applying knowledge.

Database normalization is a procedural task: the student goes through a
number of steps to analyze the quality of a databasc. We described the tasks
NORMIT supports in detail elsewhere (Mitrovie, 2002; 2003). NORMIT
requires the student to determine candidate keys (illustrated in Figurc 4), the
closuteof-asset-ofattributesyprimeattributesy simplify functional dependen-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

418 Mitrovic, Suraweera, Martin and Weerasinghe

cies, determine normal forms, and, if necessary, decompose the table. The
sequence is lixed: the student will only see a web page corresponding to the
current task. The student may submit a solution or request a new problem at
any time. He/she may also review the history of the session, or examinc their
student modecl.

NORMIT currently contains over 80 problem-independent constraints
that describe the basic principles of the domain. Some constraints check the
syntax of the solution, while others check the semantics by comparing the
student’s solution to the ideal solution, generated by the problem solver. In
order to identify constraints, we studied material in textbooks, such as
(Elmasri & Navathe, 1994), and also used our own experience in tcaching
databasc normalization.

NORMIT also provides support for self-explanation, onc of the most effec-
tive learning strategics. In self-explanation, the student solves a problem (or
explains a solved problem) by specifying why a particular action is needed and
how it contributes toward the solution. Existing ITSs that support self-expla-
nation, such as Geometry Explanation Tutor (Aleven & Koedinger, 2002) and
Sti-Coach (Conati & VanLchn, 2000), require the student to cxplain every
problem-solving step. Tnstcad, NORMIT requires an explanation for actions
being performed for the first time only. For subscquent actions of the same
type, explanation is required only if the action is performed incorrectly. This

te keys for the following table with the given |

ek the Doss hutton to continge

Enter each canditlate key into the spa\:e provided (eath attrihute should be
separated by ¢ nnm)* _

Carrlda

Figure 4. The interface of NORMIT

eproduction prohibited without permission.

DB-Suite: Experiences with Three Intelligent, Web-Based Database Tutors 419

strategy reduces the burden on the more able students (by not asking them to
provide the same explanation every time an action is performed correctly), and
at the same time provides enough situations for students to develop and
improve their sclf-explanation skills. Figure 5 shows a situation when the stu-
dent has specified a functional dependency that vielates the third normal form
(3NF) incorrectly. The tutor asks the student to specify the reason for sclect-
ing this functional dependency. If the student’s explanation is incorrect, they
will be given another question, asking them to define the underlying domain
concept. The purposc of the questions is to require the student to relate their
problem-solving actions (generative knowledge) to declarative knowledge,
thus supporting the acquisition of deep knowledge.

In addition to the model of the student’s knowledge, NORMIT also stores
information about the student’s self-explanation skills. For each constraint,
the student model contains information about the student’s explanations
related to that constraint. The student model stores the history of student’s
explanation of cach domain concept.

EVALUATION OF DB-SUITE TUTORS

We believe that the credibility of an ITS can only be gained by proving
its cffectiveness in a classroom environment, with typical students (Mitro-

tbiite on the i Help

Since vou think this relation 1s not in 0,
e on the 1 ot peed 1o spectiy ol functionat
dependencies that violate 3N

B0 back bintton if you've changed

Chieek botron when you want

k Your ansvier. I your

i Is arvect, click thi Done bButton

o continue,

B oaw

Figure 5. Asking the student to explain the current action

eproduction prohibited without permission.

420 Mitrovic, Suraweera, Martin and Weerasinghe

vic, Martin & Mayo, 2002). This section presents the results of scveral eval-
uation studies performed on the presented tutors.

Evaluating SQL-Tutor

The stand-alone version of the system was evaluated in 1998 (Mitrovie &
Ohlsson, 1999), showing that the system had a significant effect on students’
knowledge after a single two-hour scssion. Here we report on cvaluation
studies performed on the web-enabled version of SQL-Tutor. General infor-
mation about the studics is given in Table 1. In all studics, students had four
to six lectures and labs before using the system. Their performance was mea-
sured by a pre/ and a posttest. Every action performed by a student was
logged, and the logs were later analysed. All studies were carried out at the
University of Canterbury, with Computer Science students enrolled in data-
base courses. Each study had a specific focus. In this article, we report on
two dimensions: usability and learning.

The first two studies involved a single, two-hour long scssion. We refer
the interested reader to Mitrovie and Suraweera (2000), for the details of the
evaluation of the pedagogical agent, and to Mayo and Mitrovic (2000), for
the details of the cvaluation of the probabilistic student model. Studics 3, 4,
and 5 were longer. In cach of these studies, SQL-Tutor was demonstrated in
a lecture. The course involved a test on SQL a month and a half after the sys-
tem was introduced. The experiments were sct up this way so that the stu-
dents may usc the system over scveral weeks. The goal of study 3 was to ana-
lyze students” metacognitive skills, and the results are described in Mitrovic
(2001). In study 4, we introduced an open student model, which presented
an overview of student’s knowledge. The goal of that study was to sce
whether this open model supports learning and self-assessment skills

Table 1
Details of the Evaluation Studies
Study Timing Students | Length Purpose of study
1 May 1999 33 2 hours Feedback evaluation

2 October 1999 34 2 hours | Animated pedagogical agent;
Probabilistic student model

8 Sep-0ct 2000 70 7 weeks Meta-cognitive skills
4 Sep-0ct 2001 Tl 1 month Open student model
5 Sep-0ct 2002 100 1 month Problem selection

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DB-Suite: Experiences with Three Intelligent, Web-Based Database Tutors 421

(Mitrovic & Martin, 2002). Finally, in study 5 we analysed whether students
can learn to sclect problems well (Mitrovic & Martin, 2003).

We analyzed the student logs to evaluate how well SQL-Tutor supports
learning. Since we represent knowledge of SQL. in terms of constraints, we
looked at how students acquire and apply them. In carlier work (Mitrovic &
Ohlsson, 1999), the cvaluation of SQL-Tutor showed that constraints repre-
sented psychologically appropriate units of knowledge; learning followed a
smooth curve when plotted in terms of constraints. We performed the same
analysis for SQLT-Web. Figurc 6 shows the decrease in the number of vio-
lated constraints as a function of the number of times cach constraint was
relevant. The degree of mastery of a given constraint is a function of the
amount of practice on that unit. There is not much difference between the
three student populations, as the graphs for three evaluation studies arc close
to cach other. In other words, the students from each of the three studics
tended to acquire constraints at approximately the same rate.

In the third study we compared the performance of students who used
SQL-Tutor (experimental group) to the rest of the class (control group).
These two groups listened to exactly the same number of lectures and labs,
and sat the same posttest. The pretest was administered online, when the stu-
dents logged on to the system for the first time. The results of the experi-
mental group on the posttest are higher than the results of the control group,

0.1
0.09 » Study 1 — Study2
0.08 - y =0.0753x 0994 y =0.0407x 078
007 1\ R?=06764 R2 = 08375
0.06 \
<
0.05 ° \\\E Study 3
\ I y =0.0773x 07304
A\ ~ &
0.04 < = R? = 0.9408 —
0.03 % O
b T R P
a \\ T~] hd
0.02 ‘\~§_B_\L~";“"~~-D-...-Q--_
0.01 o Y“T"~-... o) O ~-E-.--_
i = > :
0 T T T T T T T : T T |

Number of times relevant

¢ Study 1 o Study?2 o Study 3
Power (Study 1) e POWET (Study 2) ~ = - = Power (Study 3)

Figure 6. Mastery of SQL-Tutor’s constraints

eproduction prohibited without permission.

422 Mitrovic, Suraweera, Martin and Weerasinghe

and the difference is significant (p<0.005). However, this result is not
irrefutable, as the experiment was not controlled. The experimental group
consisted of volunteers, who are usually more motivated students.

The goal of study 4 was to determine the effect of a simple open student
modecl on students’ [earning and sclf-assessment skills. Let us first describe the
way we visualize the student model. The student model in SQL-Tutor is imple-
mented as an overlay on top of the constraint basc. There are currently more
than 600 constraints in the system, and therefore it is not possible to visualize
information about cach constraint. Instead, we generalized the student model to
resemble the structure of the SELECT statement: the student is shown six
“skill-omcters,” which show the student model in terms of the six clauses of the
answer. For cach clause we find all the relevant constraints and compute the
coverage (the percentage of constraints that the student has used) and correct-
ness (i.c., the percentage of all relevant constraints that the student has used cor-
rectly). These two percentages are visualized as shown in Figure 7.

Table 2
Pre and posttest results for study 3
Group | Students | Pretest mean (SD) | Posttest Mean (SD)
Experimental 70 4.02 (1.52) 5.01 (1.24)
Control 62 4.3 (1.6)

Current Proficiency

green = learned, red = still learning, white = not covered yet

SELECT 33% coversd 25% leamed
FROM 53% covered 49% learned
WHERE 5% covered 4% learned

GROUPEY [55% covered 61% learned

ORDER BY 56% covered 45% learned

FEased on your past performance, I suggest a probletmn from the ORDER BY clause

What problem type would you like? | ORDER Y ; WHERE f

Figure 7. The visualization of the student model

eproduction prohibited without permission.

DB-Suite: Experiences with Three Intelligent, Web-Based Database Tutors 423

Study 4 (Mitrovic & Martin, 2002) was ablative: the experimental group
had access to the open student model, while the control group had not.
Although we did not see any significant difference in the posttest scores of
the control and the experimental group, the less able students from the
experimental group have scored significantly higher than comparable stu-
dents from the control group. Further, the more able students who had access
to their models abandoned significantly less problems than their counter-
parts from the control group and had stronger opinions on what they should
work on next, which often varicd from the system’s suggestions. Overall,
thesce results suggest that the open model may have improved the perfor-
mance of less able students and boosted the sclf-confidence of more able
students, such that thcy abandoned fewer problems and judged their own
abilitics more readily.

The goal of study 5 (Mitrovic & Martin, 2003) was to investigate whether
students can learn how to sclect problems with the support of an open stu-
dent model and scaffolded problem selection. For this study we developed
three versions of the system, differing from cach other in the problem selec-
tion stratcgy. We wanted the student to reflect on their knowledge, in order
to identify the type of problems they have difficulties with. To support
reflection, we open the student model to the users in the same way as in
study 4. The three versions of the system used in the study support different
problem selection strategics. In the first version, the system sclects the
appropriate type of problem for the student on the basis of the student model.
When the student asks for a new problem, they get a page showing their stu-
dent model, and a message specifying what type of problem is sclected by
the system. In the second version, the student is always asked to select a type
of problem. In the last version, problem selection is faded. For novices, the
student is asked to select the type of the problem. If the student’s selection
differs from what the system prefers, the student receives a new page, show-
ing the student modcl and spccifying the system’s preference. Once the stu-
dent’s level increases over the threshold, the student is allowed to sclect the
type of problems without system’s intervention. We hypothesized that this
version would support less able students in acquiring metacognitive skills,
by opening the problem-sclection strategy to them and supporting reflection
on their knowledge through the overview of their student model. Oncce the
type of problem has been determined in onc of the previous three ways, the
system scarches for problems of the appropriate type that have not been
solved yet. The system then selects onc that is at the appropriate level of
complexity for the student’s current state. Table 3 summarizes the experi-
mental design. We assessed students” abilities by a pretest. More able stu-
dents were randomly allocated to versions where problems were sclected by
the student or by the system. Less able students were randomly allocated to
oneol the threeversions of the'systemyWethypothesized that less able stu-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

424 Mitrovic, Suraweera, Martin and Weerasinghe

dents would do the best in the faded condition, and worst when selecting
problems on their own. We further hypothesized that less able student would
only be able to acquire problem-selection skills in the faded condition.

Table 4 gives the results on the pre- and posttest for students who have sat
both. The two more able groups achicved higher results on the pretest than
on the posticst, but the difference is not significant. In previous studics with
SQL-Tutor, more able students cither improved (Mitrovie & Martin, 2002)
or achicved slightly lower scorcs on the posttest (Mitrovic, 2001). All three
less able groups improved on the posttest, but the improvement is significant
for the faded group only. This supports our hypothesis that less able students
arc not good in problem selection, and therefore Icarn more when they do
not need to sclect problems by themselves.

The experimental results did not support our first hypothesis: more able
students appeared to be no better at problem sclection than their less able
counterparts, with a/l students benefiting from system assistance at problem
sclection. However, the results did highlight the importance of problem sclec-
tion: students that had system help performed best on the posttest. It also
appears that attempts to coach students in the skill of problem sclection were
successlul: the students in the faded group improved their sclection accuracy,
and performed better at selection than the students who were not coached.

Table 3
The Five Groups in Study 5
Ability | Problem selection
More able System Student N/A
Less able System Student Faded
Table 4
Pre/Post Test Results
Group Students | Pretest mean (SD) | Posttest Mean (SD)
More able - system 6 CAr 1170 5.83 (1.47)
More able - student 6 6.67 (1.03) 517 (1.94)
Less able - system 6 3.33(0.52) 4.67 (1.86)
Less able - student 3 3.67 (1.15) 4 (2)
Less able - faded 9 4.22 (0.97) 5:55:(1:51)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DB-Suite: Experiences with Three Intelligent, Web-Based Database Tutors 425

Evaluating KEZMIT:

An evaluation study was carried out at the University of Canterbury in
August 2001. The study involved 62 volunteers from students enrolled in the
Introduction to Databases course (COSC 226) offered by the Computer Sci-
cnee department. This second-year course teaches ER modeclling as outlined
by Llmasri and Navathe (1994). The students had learned 1:R modelling con-
cepts during two weeks of lectures and had some practice during two weeks
of tutorials prior to the study.

The evaluation study was conducted in two strcams of two-hour labora-
tory sessions. The participants interacted with either KERMIT (experimen-
tal group) or ER-Tutor (control group), a cut-down version of the system that
provided no feecdback on students’ solutions. The sct of problems and the
order in which they were presented was identical for both groups. A total of
six problems were ordered in increasing complexity. Each session proceed-
ed in four distinct phases. Initially each student was given a document that
contained a brief description of the study and a consent form. The students
sat a pretest and then interacted with the system. Finally, the participants
were given a posttest and a questionnaire. The questionnaire contained 14
questions. Initially students were questioned on previous experience in ER
modelling. Most questions asked the participants to rank their perception on
various issues on a Likert scale with five responses ranging from very good
(5) to very poor (1), and included the amount they lcarned about ER model-
ling by interacting with the system and the enjoyment cxpericnced. The stu-
dents were also allowed to give free-form responscs. Finally, suggestions
were requested for enhancing the system.

Table 5 displays a summary of the questionnaire responses. Both groups
required approximately the same time to lcarn the interface, thought to have
learned the same amount, and enjoyed the system similarly. The free-form
comments from the experimental group cmphasized the importance of
feedback for their learning. The students who used ER-Tutor rated its inter-
face casicr to use in comparison to the students who used KERMIT, The
difference of 0.46 in favour of ER-Tutor’s interface is statistically signifi-
cant (p<.01). This result was expected since KERMIT’s interface is more
complex than ER-Tutor’s. The mean rating for the usefulness of feedback is
significantly higher for the experimental group (p<.01). These results are
analogous with our expectations due to the difference in the information
content prescnted as feedback from each system. KERMIT provides indi-
vidualised feedback, while the students who used ER-Tutor only had the
option of viewing the completed solution to each problem. Seventy-four
percent of the students who used ER-Tutor indicated the nced for morc
detailed help other than the complete solution, compared to 61% of the stu-
dents who used KERMIT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mitrovic, Suraweera, Martin and Weerasinghe

Table 5
Mean Responses from the User Questionnaire for the Evaluation Study

KERMIT ER-Tutor
mean | s.d. mean |s.d.
Time to learn interface (min.) 11.50 |11.68 11.94 (14.81
Amount learned 3.19 0.65 3.06 0.89
Enjoyment 3.45 0.93 3.42 1.06
Fase of using interface 3.19 0.91 3.65 1.08
Usefulness of feedback 3.42 1.09 2.45 1512

We cvaluated how student’s learned in KERMIT by analysing the student
logs and identifying cach problem-state in which a constraint was relevant,
the same way as in SQL-Tutor. The results are shown in Figure 8. The power
curve displays a close fit with an R? power-law fit of 0.88. The probability
of 0.23 for violating a constraint at its first occasion of application has

03

y = 0.2538x 92

R? =0.8847
025

X
X
0.2

o
&
/
*
%

2
%
& M
X
0.1 &
0.05
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Occasion number

Figure 8. Probability of violating a constraint as a function of the occasion
when that constraint was relevant, averaged over all participants
in the pilot study

eproduction prohibited without permission.

DB-Suite: Experiences with Three Intelligent, Web-Based Database Tutors 427

decreased to 0.12 at its 16th occasion of application displaying a 53%
decreasc in the probability.

The mean scores of the pre and posttest (out of a possible 22) are shown in
Table 6. The difference in scores on the pretest is statistically insignificant,
confirming that the two groups are comparable. The experimental group
achicved significantly higher score on the posttest (p<.01). Conversely, the dif-
ference in pre- and posttest scores of the group who used ER-Tutor is statisti-
cally insignificant. The difference in posttest scores of the two groups is sta-
tistically significant (p<.05). We can conclude from these results that students
who used KERMIT learned more than the control group students. The effect
size of the experiment is 0.63, which is comparable with the effect sizes of
0.63 published by Albacete and VanLchn (2000) and 0.66 published in Mitro-
vic et al. (2002). Both published results are also results from experiments that
spanned a two-hour session. An effect size of 0.63 with the students interact-
ing with the system for approximately an hour is an excellent result.

The results show that students” knowledge increased by using KERMIT,
Students who interacted with KERMIT achicved significantly higher scores
on the posttest, suggesting that they acquired more knowledge in ER mod-
clling. Subjective evaluation shows that the students in the cxperimental
group felt they learned more than their peers in the control group. It is sur-
prising to record a high mean ranking of approximatcly 3 for the control
group, when asked how much they Icarned from ER-Tutor. This may be duc
to the typical student misconception of assuming that they learned a lot by
analysing the complete solution. The student responses to the questionnaire
suggested that most students appreciated the feature of being able to view
the complete ER model.

Evaluating NORMIT

A preliminary cvaluation of NORMIT was performed in the second half
0f 2002, with the students cnrolled in an introductory databasc course at the
University of Canterbury. Our hypothesis was that self-cxplanation would
have positive effects on both procedural knowledge (i.c., problem solving
skills) and conceptual knowledge. Prior to the experiment, all students lis-

tened to four lectures on data normalization. The system was demonstrated
Table 6
Mean Pre and Posttest Scores for the Evaluation Study
| Pretest | s.d | Posttest | s.d.
KERMIT 16.16 1.82 Tld7 1.45
ER-Tutor 16.58 2.86 16.48 3.08

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

428 Mitrovic, Suraweera, Martin and Weerasinghe

in a lecturc on October 14, 2002 (during the last week of the course), and
was open to the students a day later. The accounts for students were gener-
ated before the study, and randomly allocated to one of the two versions. The
students in the control group used the basic version of the system, while the
experimental group used NORMIT-SE, the version of the system that sup-
ports sclf-explanation. The participation was voluntary, and 29 out of 151
students enrolled in the course used the system. The students were free to use
NORMIT when and for how long they wanted. Therc were 10 students in the
control, and 19 in the experimental group. The sizes of the groups arc dif-
ferent, as not all students who showed interest in participating have actually
used the system.

When a student logged on to the system for the first time, he/she was pre-
sented with a pretest. The posttest was also administered online, the first
time a student logged on to the system on or after November 1, 2002. The
date for the posttest was chosen to be just one day before the exam. We
developed two tests, which consisted of four multiplechoice questions cach.
The first two questions required students to identify the correct solution for
a given problem, while for the other two the students needed to identify the
correct definition of a given domain concept. Each student got one of these
two tests randomly as the pretest, and the other one as the posttest.

We collected data about cach session, including the type and timing of
cach action performed by the student, as well as the feedback obtained from
NORMIT. There were three students who logged on to the system, but have
not attempted any problems. We excluded the logs of these three students
from analyses. The results on the pre- and posttests are given in Table 7. The
groups are comparable, as there is no significant difference on the pretest
performance. Only three students from the control group sat the posttest, and
we have not analysed their results, as the sample was too small. On the other
hand, a paired t-test for the students in the experimental group who sat both
tests shows that their performance improved significantly (p=0.08), con-
firming the first part of our hypothcsis.

To test the second part of our hypothesis, we analysed student’s explanations.
Duc to imperfection of the logging mechanism, we do not have all information

Table 7
Pre and Posttest Results

| No of pretests | Pretest % (sd)|No of posttests |Posttest % (sd)
NORMIT 8 65.62 (36.3) 3 79.17 (25)
NORMIT-SE 18 75 (25.88) 13 89.1 (17.8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DB-Suite: Experiences with Three Intelligent, Web-Based Database Tutors 429

about self-explanations that were problem-specific (those problems have been
fixed mecanwhile). From the data we have, it can be scen that some constraints
arc much more difficult for students to learn than others. For example, out of the
total of 29 situations when students who were asked to explain why a set of
attributes is a candidate key, the correct answer was given in only two cascs.
However, we do have data about students’ sclf-cxplanations related to domain
concepts. Seven out of 11 concepts NORMIT tracks have been covered by all
students. The remaining four concepts have been covered only by some students,
because these concepts do not appear
in every problein, and the problems
students attempted vary significantly.
Figure 9 shows the probability of giv-
ing an incorrect explanation. Please
note that students were asked to 04
explain domain concepts only when
their problem-specific explanations
were incorrect (the total of 147 cases).

0.6 7

The probabilitics of incorrect answers 0.2

on the first and subsequent occasions y = 0.823x 127

were averaged over all concepts and R = 07048

all students. There is a very good fit to 5 '

the power curve, which indicates that 1 P 3 4 5 6

students do learn by explaining

domain concepts. Figure 9. Defining domain concepts
CONCLUSIONS

The Web has introduced a new paradigm for building widely accessible
intelligent cducational systems. Web-cnabled tutors can be used from any
place, and at any time. A very important aspect of web-based tutors is plat-
form-independence. This article has discussed the design and implementa-
tion of three databasc tutors. DB-suitc consists of three tutors that tcach
SQL, data normalization and conceptual data modelling to university level
students. DB-suite tutors are available from the ICTG Web server, and also
on the Addison-Wesley’s DatabasePlace, a web portal supporting several text
books in the arca of databases (http://www.aw-bc.com/databaseplace/). The
effectiveness of DB-suite tutors was cvaluated in several experiments. The
results demonstrate that the presented tutors are effective educational tools.
The participants who uscd the full version of KERMIT showed signifi-
cantly better results in both subjective and objective analyses in compari-
son to the students who practiced ER modelling with a drawing tool. In
NORMIT, the students who sclf-cxplained improved significantly both in
problenvsolvingrandrinranswering questionsiabout domain knowledge. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

430 Mitrovic, Suraweera, Martin and Weerasinghe

cvaluation studics performed on SQL-Tutor show that it supports both learn-
ing and the acquisition of metacognitive skills.

There are several avenucs to be explored to further enhance the presented
tutors. We have already carried out several projects focusing on supporting meta-
cognitive skills, such as self-cxplanation (Weerasinghe & Mitrovic, 2002; 2003)
and reflection. All DB-suite tutors present a summary of the student model, thus
supporting self-assessment and deeper understanding of the domain. For details
of cvaluating the cffects of such open model, please see Mitrovic and Martin
(2002; 2003), and Hartley and Mitrovic (2002). We plan to add morc sophisti-
cated, adaptive support for reflection and self-explanation to all tutors.

As mentioned carlicr, we have also developed WETAS, an authoring shell
for developing constraint-based tutors (Martin & Mitrovic, 2002a; 2003). For
text-based tutors, WETAS basically requires the author to provide only the
knowledge base and a sct of problems and their solutions; all other functions
arc provided by WETAS. For graphical domains (such as KERMIT), they also
need to provide the interface. Although WETAS is a powerful I'TS engine, stud-
ics of how novice authors use WETAS to develop new tutors (Martin & Mitro-
vic, 2003) indicate that more support is required for authoring. We are current-
ly looking at ways to enhance WETAS to ease the authoring process, including
automated knowledge acquisition, support for structuring the domain model
into ontologics and tools for assisting the re-usc of existing domain models.

References

Albacete, P. L. & VanLehn, K. (2000). The conceptual helper: An intelligent tutoring system for
teaching fundamenatal physics concepts. In G. Gauthier, C. Frasson, & K. VanlLehn, (Eds.),
Proceedings of the 5" International Conference on Intelligent Tutoring Systems, (pp. 564-
573), Montreal, Canada. Berlin: Springer.

Aleven, V., & Koedinger, K. (2002). An effective metacognitive strategy: Learning by doing and
explaining with a computer-based cognitive tutor. Cognitive Science, 26, 147-179.

Anderson, J. R., Corbett, A., Koedinger, K., & Pelletier, R. (1996). Cognitive tutors: Lessons
learned. Journal of Learning Sciences, 4(2), 167-207.

Bloom, B. S. {1984). The 2-sigma problem: The search for methods of group instruction as effective
as one-to-one tutoring. Educational Researcher, 13, 4-16.

Chen, P. P. (1976). The entity relationship model — toward a unified view of data. ACM Transactions
Database Systems, 1(1), 9-36.

Conati, C., & VanLehn, K. (2000). Toward computer-based support of meta-cognitive skills: A
computational framework to coach self-explanation. International Journal of Al in Education,
11, 389-415.

Corbett, A. T., Trask, H. J., Scarpinatto, K. C. & Hadley, W. S. (1998). A formative evaluation of the
PACT algebra Il tutor: Support for simple hierarchical reasoning. in B.P. Goettl, H.M. Halff, C.L.
Redfield & V.J. Shute, (Eds.), Proceedings of the 4" International Conference on Intelligent
Tutoring Systems, (pp. 374-383), San Antonio, Texas.

Elmasri, R., & Navathe, S. B. (1994). Fundamentals of database systems, (2nd ed.) Boston:
Addison-Wesley.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DB-Suite: Experiences with Three Intelligent, Web-Based Database Tutors 431

Hartley, D., & Mitrovic, A. (2002). Supporting learning by opening the student model. In S. Cerri,
G. Gouarderes, & F. Paraguacu, (Eds.), Proceedings of the 6" International Conference on
Intelligent Tutoring Systems ITS 2002, (pp. 453-462), Biarritz, France.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutoring goes
to school in the big city. International Journal of Al in Education, 8(1), 30-43.

Martin, B., & Mitrovic, A. (2002a) Automatic problem generation in constraint-based tutors. In S.
Cerri, G. Gouarderes, & F. Paraguacu (Eds.), Proceedings of the 6" International Conference
on Intelligent Tutoring Systems ITS 2002, (pp. 388-398), Biarritz, France.

Martin, B., & Mitrovic, A. (2002b). Authoring web-based tutoring systems with WETAS. In Kinshuk,
R. Lewis, K. Akahori, R. Kemp, T. Okamoto, L. Henderson, C-H Lee (Eds.), Procsedings of the Inter-
national Conference on Computers in Education ICCE 2002, (pp. 183-187), Auckland, New Zealand.

Martin, B., & Mitrovic, A. (2003). Domain modeling: Art or science”? In U. Hoppe, F. Verdejo, & J.
Kay (Eds.), Proceedings of the 11t International Conference on Artificial Intelligence in Edlu-
cation AIED, (pp. 183-190). Burke, VA: 10S Press.

Mayo, M., & Mitrovic, A. (2000). Using a probabilistic student model to control problem difficulty.
In G. Gauthier, C. Frasson, & K. VanLehn (Eds.}, Proceedings of ITS’2000, (pp. 524-533).
Berlin: Springer.

Mayo, M., & Mitrovic, A. (2001). Optimising ITS behaviour with Bayesian networks and decision
theory. International Journal on Artificial Intelligence in Education, 12(2), 124-153.

Mayo, M., Mitrovic, A., & McKenzie, J. (2000). CAPIT: An intelligent tutoring system for capitalisation
and punctuation. In Kinshuk, C. Jesshope, & T. Okamoto, (Eds.), Proceedings of Advanced
Learning Technology: Design and Development Issues, (pp. 151-154). Los Alamitos, CA: IEEE
Computer Society.

Mitrovic, A. (1998a). Experiences in implementing constraint-based modelling in SQL-Tutor. In
B.P. Goettl, H.M. Halff, C. Redfield, & V.J. Shute, (Eds.), Proceedings of the 4* International
Conference on Intelligent Tutoring Systems, (pp. 414-423).

Mitrovic, A. (1998b). Learning SQL with a computerised tutor. In Proceedings of the 29 ACM
SIGCSE Technical Symposium, (pp. 307-311), Atlanta, GA.

Mitrovic, A. (2001). Investigating students’ self-assessment skills. In M. Bauer, P.J. Gmytrasiewicz,
& J. Vassiteva (Eds.), Proceedings of the 8" International Conference on User Modeling UM,
{pp. 247-250). Berlin: Springer-Verlag LNAI 2109,

Mitrovic, A. (2002). NORMIT, a web-enabled tutor for database normalization. In Kinshuk, R.
Lewis, K. Akahori, R. Kemp, T. Okamoto, L. Henderson, & C-H L ee (Fds.), Proceedings of the Inter-
national Conference on Computers in Education ICCE, (pp. 1276-1280), Auckland, New Zealand.

Mitrovic, A. {2003). Supporting self-explanation in a data normalization tutor. In V. Aleven, U.
Hopppe, J. Kay, R. Mizoguchi, H. Pain, F. Verdejo, & K. Yacef (Eds.), Supplementary proceed-
ings, AIED, (pp. 565-577).

Mitrovic, A., Koedinger, K., & Martin, B. (2003). A comparative analysis of cognitive tutoring and
constraint-based modelling. In P. Brusilovsky, A. Corbett, & F. de Rosis (Eds.), Proceedings of
the Ninth International Conference on User Modeling UM, (pp. 313-322). Berlin: Springer-
Verlag, LNAI 2702.

Mitrovic, A., & Martin, B. (2002). Evaluating the effects of open student models on learning. In
P. de Bra, P. Brusilovsky, & R. Conejo (Eds.), Proceedings of the2™ international Conference
on Adaptive Hypermedia and Adaptive Web-Based Systems AH, (pp. 296-305), Malaga,
Spain, LCNS 2347.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

432 Mitrovic, Suraweera, Martin and Weerasinghe

Mitrovic, A., & Martin, B. (2003). Scaffolding and fading problem selection in SQL-Tutor. In U.
Hoppe, F. Verdejo, & J. Kay (Eds.), Proceedings of the 11" International Conference on Arti-
ficial Intelligence in Education AIED, (pp. 479-481). Burke, VA: 10S Press.

Mitrovic, A., Martin, B., & Mayo, M. {2002). Using evaluation to shape ITS design: Results and
experiences with SQL-Tutor. International Journal of User Modeling and User-Adapted Inter-
action, 12(2-3), 243-279.

Mitrovic, A., Mayo, M., Suraweera, P., & Martin, B. (2001). Constraint-based tutors: A success
story. In L. Monostori, J. Vancza, & M. Ali (Eds.), Proceedings of the 14" International Conference
on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE-
2001), {pp. 931-940). Budapest, Hungary. Berlin, Heidelberg: Springer-Verlag LNAI 2070.

Mitrovic, A., & Ohlsson, S. (1999). Evaluation of a constraint-based tutor for a database language.
International Journal on AIED, 10(3-4), 238-256.

Mitrovic, A., & Suraweera, P. (2000). Evaluating an animated pedagogical agent. In G. Gauthier,
C. Frasson, & K. VanLehn (Eds.), Proceedings of [TS’2000, (pp. 73-82). Berlin: Springer.
Ohlsson, S. (1994). Constraint-based student modelling. In Proceedings of Student Modelling:
The Key to Individualized Knowledge-Based Instruction, (pp. 167-189). Berlin: Springer-Verlag.

Ohlsson, S. (1996). Learning from performance errors. Psychological Review, 103, 241-262.
Suraweera, P., & Mitrovic, A. (2001). Designing an intetligent tutoring system for database
modelling. In M.J. Smith & G. Salvendy, (Eds.), Proceedings of the " International Confer-
ence on Human-Computer Interaction (HCIl 2001), 2, /45-749, New Orleans.

Suraweera, P. & Mitrovic, A. (2002) KERMIT: A constraint-hased tutor for database modeling. In
S. Cerri, G. Gouarderes, & F. Paraguacu (Eds.}, Proceedings of the 6" International Confer-
ence on Intelligent Tutoring Systems ITS 2002, (pp. 377-387), Biarritz, France, LCNS 2363.

Vasilakos, T., Devedzic, V., Kinshuk, & Pedrycz, W. (2004). Computational intelligence in web-based
education. Journal of Interactive Learning Research, 15(4), 299-318. Special Issue.

Wang, T., & Mitrovic, A. (2002). Using neural networks to predict student’s behaviour. In Kinshuk,
R. Lewis, K. Akahori, B. Kemp, T. Okamoto, L. Henderson, & C-H Lee (Eds.), Proceedings of
the International Conference on Computers in Education ICCE 2002, (pp. 969-973). Los
Alamitos, CA: IEEE Computer Society,.

Weerasinghe, A., & Mitrovic, A. (2002). Enhancing learning through self-explanation. Kinshuk, R.
Lewis, K. Akahori, R. Kemp, T. Okamoto, L. Henderson, & C-H Lee (Eds.), Proceedings of ICCE
2002, (pp. 244-248), Auckland, New Zealand.

Weerasinghe, A., & Mitrovic, A. (2003). Effects of self-explanation in an open-ended domain. In
U. Hoppe, F. Verdejo & J. Kay (Eds.), Proceedings of the 11" International. Conference on Arti-
ficial Intelligence in Education AIED 2003, (pp. 512-514). Burke, VA: 10S Press.

Acknowledgements

This research could not have been done without the support of other past
and present members of ICTG. The work presented here was supported by
the University of Canterbury rescarch grants U6430 and U6532. We also
thank our students for putting their time and effort into trying out our tutors
and commenting on them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

